Publications of Lori M. Petrovich

Continuous Oligomerization Process and Products Therefrom G.D. Greenblatt, B.C. Lange, M.D. Bowe, R.F. Merritt, R. Wilczynski, G.R. Larson, L.M. Petrovich, D.W. Whitman, Eur. Pat. Appl. 1010706 A2 20000621, Rohm and Haas Company, 2000.

Process for Pure Grade Acrylic Acid, W. Bauer, Jr., T.A. Hale, R.M. Mason, R.K. Upmacis, L.M. Petrovich, US 5,759,358, Rohm and Haas Company, June 2, 1998.

Electron Withdrawing Substituents on Equatorial and Apical Phosphines Have Opposite Effects on the Regioselectivity of Rhodium Catalyzed Hydroformylation. C.P. Casey, E.L. Paulsen, E.W. Buttenmueller, B.R. Proft, L.M. Petrovich, B.A. Matter and D.R. Powell, J. Am. Chem. Soc., 1997, 119, 11817-11825.

(Chelating diphosphine)rhodium-Catalyzed Deuterioformylation of 1-Hexene: Control of Regiochemistry by the Kinetic Ratio of Alkylrhodium Species Formed by Hydride Addition to Complexed Alkene, C.P. Casey and L.M. Petrovich, J. Am. Chem. Soc., 1995, 117, 6007-6014.

Metal Insertion into a CH Bond as a Route to the Heterobimetallic m-Methylidene Complex C5H5(CO)2Re(m-CH2)Pt(PPh3)2, C.P. Casey, Y. Wang, L.M. Petrovich, T.L. Underiner, P.N. Hazin, and J.M. Desper, Inorg. Chim. Acta, 1992, 198-200, 557.

Diphosphines with Natural Bite Angles Greater than 120° Increase Selectivity for n-Aldehyde Formation in Rhodium-Catalyzed Hydroformylation, C.P. Casey, G.T. Whiteker, M.G. Melville, L.M. Petrovich, D.R. Powell and J.A. Gavney, Jr., J. Am. Chem. Soc., 1992, 114, 5535-5543.

New Reactions of Organorhenium Compounds, C.P. Casey, E.W. Rutter, Jr., P.N. Hazin, Y. Wang, C.S. Yi, H. Nagashima, L.M. Petrovich, F.R. Askham, P.C. Vosejpka, H. Sakaba, and T.L. Underiner in K. H. Dötz and R. W. Hoffmann (Eds.): Organic Synthesis via Organometallics, Vieweg, Braunschweig 1991, 187-205.

A New Route to Early-Late Heterobimetallic µ-Alkylidene Complexes, C.P. Casey, F.R. Askham, and L.M. Petrovich, J. Organomet. Chem. 1990, 387, C31-C35.

Effect of Allyl Methyl Substituents on the Preparation, Dynamics, and Reactivity of (η5-C5Me5)(allyl)ZrX2 complexes (X = Cl, Br): Structure of (η5-C5Me5)(C3H5)ZrCl2 and (η5-C5Me5)(1,2-Me2(butadiene))(η2-CH2PPh2)Zr. Dynamics of ((η5C5Me5)(2,3-Me2(butadiene))(η2-CH2PPh2)Zr, P.J. Vance, T.J. Prins, B.E. Hauger, M.E. Silver, M.E. Wemple, L.M. Pederson, D.A. Kort, M.E. Kannisto, S.J. Geerligs, R.S. Kelly, J.J. McCandless, J.C. Huffman, and D.G. Peters, Organometallics 1991, 10, 917-924.

Factors Determining Allyl Hapticity in Early-Transition-Metal Allyl Complexes: Synthesis, Structure, and Dynamics of Cp23-1,2,3-Me3allyl)ZrBr and Cp21-1,1,2- Me3allyl)ZrBr, E.J. Larson, P.C. Van Dort, J.R. Lakanen, D.W. O'Neill, L.M. Pederson, J.J. McCandless, M.E. Silver, S.O. Russo, and J.C. Huffman Organometallics, 1988, 7, 1183-1187.

Thermally Stable Allyl Zirconium Halide Compounds. Synthesis, Crystal Structure, and Dynamics of (η5-C5Me5)(η5-1,2,3-Me3allyl)ZrBr2 and (η5-C5Me5)(η3-1,1,2- Me3allyl)ZrBr2, E.J. Larson, P.C. Van Dort, J.S. Dailey, J.R. Lakanen, L.M. Pederson, M.E. Silver, J.C. Huffman, and S.O. Russo, Organometallics 1987, 6, 2141-2146.