Skip to contentNorth Carolina State University Home Page
ArchaeInteractive Home Page
Radiocarbon Dating in Environmental Archaeology
   overview | collecting samples | calibrating practice | 14C data tables


I. The Radiocarbon Revolution

Since its development by Willard Libby in the 1940s, radiocarbon (14C) dating has become one of the most essential tools in archaeology. Radiocarbon dating was the first chronometric technique widely available to archaeologists and was especially useful because it allowed researchers to directly date the panoply of organic remains often found in archaeological sites including artifacts made from bone, shell, wood, and other carbon based materials. In contrast to relative dating techniques whereby artifacts were simply designated as "older" or "younger" than other cultural remains based on the presence of fossils or stratigraphic position, 14C dating provided an easy and increasingly accessible way for archaeologists to construct chronologies of human behavior and examine temporal changes through time at a finer scale than what had previously been possible. The application of Accelerator Mass Spectrometry (AMS) for radiocarbon dating in the late 1970s was also a major achievement. Compared to conventional radiocarbon techniques such as Libby's solid carbon counting, the gas counting method popular in the mid-1950s, or liquid scintillation (LS) counting, AMS permitted the dating of much smaller sized samples with even greater precision.

Regardless of the particular 14C technique used, the value of this tool for archaeology has clearly been appreciated. Desmond Clark (1979:7) observed that without radiocarbon dating "we would still be foundering in a sea of imprecisions sometime bred of inspired guesswork but more often of imaginative speculation." And as Colin Renfrew (1973) aptly noted over 30 years ago, the "Radiocarbon Revolution" transformed how archaeologists could interpret the past and track cultural changes through a period in human history where we see among other things the massive migration of peoples settling virtually every major region of the world, the transition from hunting and gathering to more intensive forms of food production, and the rise of city-states.

However, as with any dating technique there are limits to the kinds of things that can be satisfactorily dated, levels of precision and accuracy, age range constraints, and different levels of susceptibility to contamination. Radiocarbon dating is especially good for determining the age of sites occupied within the last 26,000 years or so (but has the potential for sites over 50,000), can be used on carbon-based materials (organic or inorganic), and can be accurate to within ±30-50 years. Probably the most important factor to consider when using radiocarbon dating is if external factors, whether through artificial contamination, animal disturbance, or human negligence, contributed to any errors in the determinations. For example, rootlet intrusion, soil type (e.g., limestone carbonates), and handling of the specimens in the field or lab (e.g., accidental introduction of tobacco ash, hair, or fibers) can all potentially affect the age of a sample. Bioturbation by crabs, rodents, and other animals can also cause samples to move between strata leading to age reversals. Shell may succumb to isotopic exchange if it interacts with carbon from percolating ground acids or recrystallization when shell aragonite transforms to calcite and involves the exchange of modern calcite.

The surrounding environment can also influence radiocarbon ages. The introduction of "old" or "artificial" carbon into the atmosphere (i.e., the "Suess Effect" and "Atom Bomb Effect", respectively) can influence the ages of dates making them appear older or younger than they actually are. This is a major concern for bone dates where pretreatment procedures must be employed to isolate protein or a specific amino acid such as hydroxyproline (known to occur almost exclusively in bone collagen) to ensure accurate age assessments of bone specimens. Alone, or in concert, these factors can lead to inaccuracies and misinterpretations by archaeologists without proper investigation of the potential problems associated with sampling and dating.

To help resolve these issues, radiocarbon laboratories have conducted inter-laboratory comparison exercises (see for example, the August 2003 special issue of Radiocarbon), devised rigorous pretreatment procedures to remove any carbon-containing compounds unrelated to the actual sample being dated, and developed calibration methods for terrestrial and marine carbon. Shells of known age collected prior to nuclear testing have also been dated ( to ascertain the effects of old carbon (i.e., local marine reservoir effects).

II. What can we date with radiocarbon dating?

Radiocarbon dating can be used on either organic or inorganic carbonate materials. However, the most common materials dated by archaeologists are wood charcoal, shell, and bone. Radiocarbon analyses are carried out at specialized laboratories around the world (see a list of labs at:

III. How do we measure 14C?

In brief, radiocarbon dating measures the amount of radioactive carbon 14 (14C) in a sample. When a biological organism dies, the radioactive carbon in its body begins to break down or decay. This process of decay occurs at a regular rate and can be measured. By comparing the amount of carbon 14 remaining in a sample with a modern standard, we can determine when the organism died, as for example, when a shellfish was collected or a tree cut down.

However, there are a number of other factors that can affect the amount of carbon present in a sample and how that information is interpreted by archaeologists. Thus a great deal of care is taken in securing and processing samples and multiple samples are often required if we want to be confident about assigning a date to a site, feature, or artifact (read more about the radiocarbon dating technique at:

In addition, click here to see short movie clips on how radiocarbon is produced in the atmosphere, a decay profile, and how it is analyzed by a lab:

Continue >> to Samples



Your Assignment

Test Your Knowledge

Give Feedback

Helpful Links

Other Information