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SUMMARY

Particulate matter (PM) has been associated with mortality in several epidemiological studies. The US EPA currently
regulates PM10 and PM2.5 (mass concentration of particles with diameter less than 10 and 2.5 �m, respectively),
but it is not clear which size of particles are most responsible for adverse heath outcomes. A current hypothesis
is that ultrafine particles with diameter less than 0.1 �m are particularly harmful because their small size allows
them to deeply penetrate the lungs. This paper investigates the association between exposure to particles of varying
diameter and daily mortality. We propose a new dynamic factor analysis model to relate the ambient concentrations
of several sizes of particles with diameters ranging from 0.01 to 0.40 �m with mortality. We introduce a Bayesian
model that converts ambient concentrations into simulated personal exposure using the EPA’s Stochastic Human
Exposure and Dose Simulator, and relates simulated exposure with mortality. Using new data from Fresno, CA,
we find that the 4-day lag of particles with diameter between 0.02 and 0.08 �m is associated with mortality. This
is consistent with the small particles hypothesis. Copyright © 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Several epidemiological studies have shown an association between air pollution and adverse health
outcomes (Dockerty et al., 1992; Schwartz, 1994; Pope et al., 1995; American Thoracic Society and
Bascom, 1996a,b). Most of the recent work in this area has focused on PM10 and PM2.5, the mass
concentrations of particles less than 10 and 2.5 �m, respectively. However, it is not clear which sizes of
particles are most responsible for adverse heath outcomes. A current hypothesis is that ultrafine particles
with diameter less than 0.1 �m are particularly harmful because their small size allows them to deeply
penetrate the lungs. The literature on ultrafine particles is relatively sparse compared to the literature on
PM25 and PM10. Pekkanen et al. (2002) demonstrated an association between ultrafine particle levels
and cardiovascular symptoms, while de Hartog et al. (2003) and Timonen et al. (2004) failed to find a
relationships between ultrafine concentration and cardiorespiratory symptoms. Wichmann et al. (2000)
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and Stölzel et al. (2006) showed that ambient ultrafine concentration levels were associated with daily
mortality in Europe.

This paper uses a new dataset to investigate the association between different sizes of particulate
matter (PM) and mortality. Pollution data is measured at a single monitoring station in downtown Fresno,
CA. The ambient concentrations of PM10, PM2.5, and several sizes of particles with diameters ranging
from 0.01 to 0.40 �m are recorded hourly for 2001 and 2002. The health outcome is non-accidental
mortality in elderly residents of Fresno, CA.

We develop a novel dynamic factor model to analyze the multivariate time series of particles with
diameter less than 0.40 �m and to relate the various PM diameters with mortality. Bayesian latent
factor models are common in health research (e.g., Wang and Wall, 2003; Biggeri et al., 2005; Lui
et al., 2005) and in multivariate time series analysis (West and Harrison, 1997; Aguilar et al., 1998).
The dynamic factor model reduces the dimension of the multivariate pollution time series to a small
number of temporally correlated latent time series factors. In our setting, the natural ordering of the
diameters suggests an extension of the usual dynamic factor model that makes use of the similarity
between adjacent diameters. This extension of the usual dynamic factor model borrows strength across
diameters, thereby reducing variability in the latent factors. The latent factors are used as predictors of
mortality. This results in a supervised factor analysis in that the factors are not only chosen to model
PM data, but also to form predictive groups of diameters to be related with mortality.

A common limitation of observational studies of the effects of air pollution on human health is that
ambient concentrations are used as surrogates for personal exposures, and a single value is used to
represent the exposure of each individual in a geographic region. It is difficult to extrapolate a single
ambient concentration to the entire population of interest because for a given ambient concentration
level personal exposure can vary widely across individuals with different activity patterns. Assuming
a common value of exposure holds for the entire population of individuals leads to the “ecological
fallacy” (Selvin, 1958; Wakefield and Shaddick, 2005), and can result in bias.

We propose a new method for studying the association between PM and mortality while accounting for
variability in personal exposure. Although direct measurements of personal exposures are not available,
the population exposure distribution is estimated using the Stochastic Human Exposure and Dose
Simulation model for particulate matter (SHEDS-PM), developed by Burke et al. (2001). This stochastic
model uses information about human activity patterns, census data, and daily diurnal pollution cycles to
estimate the daily population exposure distribution. Meshing the exposure simulator into our Bayesian
framework allows us to investigate the association between personal exposure and mortality, and to
compare these results to the association between mortality and ambient concentration.

Our approach extends the work of Holloman et al. (2004) who use a method similar to SHEDS-PM
to compute the mean PM2.5 exposure for a number of counties in North Carolina and relate the mean
exposure to cardiovascular mortality. Our hierarchical model benefits from the full implementation
of SHEDS-PM by using the actual output distributions produced by the model for daily exposure to
the ambient PM level. By approximating the daily exposure distributions with normal distributions, we
incorporate the SHEDS-PM exposure distributions (not just the mean value) in the model with mortality
data to account for both the variability in exposures across the population each day and the uncertainty
in the modeled exposures. Also, we applied the SHEDS-PM model for multiple PM diameters to
investigate the joint effect of exposure to different particle sizes.

The paper proceeds as follows. Section 2 describes the Fresno dataset. The dynamic latent factor
model relating ambient concentrations with daily mortality is developed in Section 3. Details of SHEDS-
PM are provided in Section 4, along with a model for relating SHEDS-PM output with mortality via the
integrated population relative risk. Section 5 analyzes the effect of ambient concentrations on mortality
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EFFECTS OF ULTRAFINE PM 133

Figure 1. Map of Fresno, CA. The monitoring station is located in zip code 93726 about 1 km east of Highway 41

and Section 6 demonstrates the effects of using simulated exposure, rather than ambient concentrations,
as predictors of mortality. Section 7 concludes.

2. DESCRIPTION OF THE DATA

The city of Fresno is a located in central California. Its metropolitan area has approximately one million
people. PM was monitored at a single monitoring station in downtown Fresno, located in zip code
93726 about 1 km east of Highway 41 (Figure 1), a residential area in central Fresno. There are major
highways to the east and west of the station and Fresno Yosemite International Airport is roughly two
miles east of the station.

Daily non-accidental mortality counts (ICD 10th Revision codes less than 291) for 18 zip codes in
the Fresno metropolitan area (Figure 1) for 2001 and 2002 were obtained from the California Center
for Health Statistics. We consider only the elderly (> 64 years old) population because the elderly are
most susceptible to the effects of PM. According to the 2000 US census, 9.3% of Fresno’s population
is over 64 years old. Figure 2(a) plots the daily mortality counts (zeros indicate a day without deaths
for this subpopulation).

Hourly pollution data for 2001 and 2002 were downloaded from the University of Maryland’s Su-
persites Integrated Relational Database System (http://supersitesdata.umn.edu). The sizes
of PM we consider are PM10, PM2.5, and 17 ranges of fine PM with diameters ranging from 0.01 to
0.40 �m. For the diameters less than 0.40 �m, the data are recorded as number concentration (num-
ber per cubic centimeter) rather than mass concentration. The daily average concentration for several
pollutants are plotted in Figure 2. The concentrations of most PM diameters are highest in the win-
ter, especially January, 2001. Daily carbon monoxide values were provided by the EPA. The weather
covariates temperature and relative humidity are recorded hourly.
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Figure 2. Time-series plots of the Fresno raw data. (a) Non-accidental deaths, (b) PM2.5(�g/m3), (c) PM10(�g/m3), and
(d) specific diameters (number per cubic centimeter)

3. A MODEL RELATING AMBIENT PM WITH MORTALITY

3.1. A latent factor model for ambient PM levels

In this section, we propose a latent factor model for the ambient concentrations of particles with diameter
less than 0.40 �m. While PM2.5, PM10, and carbon monoxide are used as predictors of mortality, they are
not included in the factor analysis because we would like to use the factor analysis to find combinations
of diameters less than 0.40 �m that are predictors of mortality after accounting for the effects of these
copollutants.

Let ydt be the observed average daily concentration for diameter d at day t, d = 1, . . . , D and
t = 1, . . . , T . The vectors of observations for each diameter are standardized to have mean zero and
unit variance. The dynamic Bayesian factor analysis model (West and Harrison, 1997; Aguilar et al.,
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1998) assumes the mean of ydt is a linear combination of J ≤ D independent latent time series, that is,

ydt = θdt + εdt (1)

θdt = µd +
J∑

j=1

wdjfjt (2)

where θdt is the true concentration for diameter d at time t, µd is the intercept for diameter d, wdj

is the loading of the jth factor for diameter d, fjt is the value of the jth latent factor at time t, and
εdt ∼ N(0, σ2

d ), independent across d and t.
We model the latent factors fj = (fj1, . . . , fjT )′ as independent, stationary time series with mean

zero and lag-h covariance functions ρj(h). In dynamic factor analysis, vague priors are typically selected
for the loadings. However, in our setting the model can be improved by exploiting the natural ordering of
the diameters. Let wj = (w1j, . . . , wDj), the vector of loadings for the jth factor, have prior mean zero
and cov(wd1j, wd2j) = γj(|d1 − d2|). This prior is used to borrow strength across adjacent diameters.

The induced prior covariance of two true concentrations θd1t and θd2t+h is

Cov(θd1t , θd2t+h) =
J∑

j=1

γj(|d1 − d2|)ρj(h) (3)

That is, the covariance between a pair of true concentrations is the sum of the products of the autoco-
variance functions for time and diameter of the J latent time series. At this level of generality, the factor
analysis model results in a non-separable (between diameter and time) covariance function.

In the analysis of Section 5, the latent time series are taken to be independent AR(1) processes and
loading vectors are taken to be independent intrinsic AR(1) processes. That is,

fjt ∼ N
(
ρjfjt−1, τ

2
j

)
and wdj ∼ N

(
wd−1j, δ

2
j

)
(4)

where ρj ∈ (−1, 1). The factors for the first time point fj0 are given vague independent normal priors.
Restrictions are necessary to ensure that the model is well identified. The variances τ2

j and δ2
j appear

in the covariance in Equation (3) only through the product τ2
j δ2

j . Therefore to identify the scale, we fix

the conditional variances of the factors to be one, that is, τ2
j ≡ 1 for all j. Following Aguilar and West

(2000), for the first factor, we constrain the loading for the smallest diameter w11 to be one. For the
second factor, we set the loading for the smallest diameter w21 to zero and, to make identification as
strong as possible, restrict the loading for the largest diameter w2D to be one. The third loading vector
has w31 = w3D = 0 and w32 = 1, and so on.

3.2. Relating the latent factors with mortality

Including all D = 17 diameters as predictors of mortality leads to substantial multicollinearity and
misleading estimates. Clearly, some form of dimension reduction is needed. The factor analysis model
of Subsection 3.1 represents the ambient concentrations as a linear combinations of the latent time
series f1, . . . , fJ . To circumvent multicollinearity, the latent factors are used as predictors of mortality.
This results in supervised factor analysis, in that the loadings and latent factors are chosen not only
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to provide a reasonable fit to the observed ambient concentrations, but also to help explain the health
outcome.

The number of deaths on day t, Mt , has a Poisson distribution with expected value

ηt = exp
(

xtβ +
∑

Cj(t − lj)αj

)
(5)

where xt is the vector of confounders, Cj(t − lj) is the lag lj ambient level of pollutant j, and β and
α are the vectors of regression parameters. We include the pollutants PM2.5, PM10, carbon monox-
ide, and the latent factors f1, . . . , fJ . Long-term trend, temperature, humidity, and an indicator of
weekday are included as confounding variables in xt . Following Dominici et al. (2002), we use a
natural spline function of time to capture long-term trends in mortality. Temperature and humid-
ity are also smoothed with natural spline functions. The effect of the number of degrees of free-
dom of the spline functions on the estimates of the effects of PM on mortality is investigated in
Subsection 5.2.

In many studies of the health effects of PM, the lags lj are fixed at a particular value suggested
by past experience or exploratory analysis. However, for these data several lags fit the data equally
well and the choice of lag qualitatively influences the results. To account for this uncertainty, we
model the lags as random variables. Since the lags are typically chosen to be within a few days of
the event (Smith et al., 2000; Dominici et al, 2002; Pekkanen et al., 2002; Holloman et al., 2004;
Stölzel et al., 2006), the lag parameters lj are given independent discrete uniform priors on the values
{0, 1, . . . , 7}.

To complete the Bayesian model, we specify priors for the hyperparameters. The variance parameters
σ2

d and δ2
j are given independent InvGamma(0.01,0.01) priors (parameterized to have mean 1, variance

100) and the ρj are given Uniform(−1, 1) priors. The intercepts µj and the regression parameters β

and α have vague normal priors with mean zero and variance 100.

4. A MODEL RELATING EXPOSURE WITH MORTALITY

4.1. Simulating exposure using SHEDS-PM

A full description of the SHEDS-PM model can be found in Burke et al. (2001); a brief summary is
given below. The SHEDS-PM model estimates the population distribution of exposures by simulating
personal exposure for a set of I hypothetical individuals chosen to represent the study population in
terms of age, gender, employment, housing type, and smoking status. Each day, the activities of the
hypothetical individuals are generated by randomly selecting a diary from EPA’s Consolidated Human
Activity Database (CHAD). CHAD contains personal diaries of over 22 000 individuals from exposure
studies conducted around the US. The diaries describe the activity pattern of the individual throughout
the day and are selected to match the hypothetical individual based on personal characteristics, housing
type, season, day of the week, and average daily temperature.

SHEDS-PM considers nine microenvironments: outdoors, vehicles, residences, offices, schools,
stores, restaurants, bars, and other indoor environments. The average exposure for individual i on
day t, Ei(t), is the sum of the exposures accumulated in the nine microenvironments. Let Cmh(t) and
Timh(t) be the PM concentration and time spent, respectively, in microenvironment m for individual i
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Table 1. Prior distributions for selected SHEDS-PM parameters

Parameter Category Variability Uncertainty dist. of µ Uncertainty dist. of σ

Air exchange ratea Winter LogN(µ, σ2) N(−0.68, 0.10) Tri(0.55,0.65,0.75)
Spring LogN(µ, σ2) N(−0.48, 0.10) Tri(0.57,0.67,0.77)
Summer LogN(µ, σ2) N(−0.05, 0.10) Tri(0.81,0.91,1.01)
Fall LogN(µ, σ2) N(−0.88, 0.10) Tri(0.61,0.71,0.81)

Penetration 0.02 �mb N(µ, σ2)) N(0.70, 0.10) N(0.08, 0.01)
0.05 �mb N(µ, σ2) N(0.65, 0.10) N(0.08, 0.01)
0.20 �mb N(µ, σ2) N(0.65, 0.10) N(0.08, 0.01)
PMc

2.5 N(µ, σ2) N(1.00, 0.10) N(0.08, 0.01)

Deposition 0.02 �mb N(µ, σ2) N(2.50, 0.50) N(0.50, 0.10)
0.05 �mb N(µ, σ2) N(0.80, 0.10) N(0.20, 0.04)
0.20 �mb N(µ, σ2) N(0.50, 0.05) N(0.20, 0.04)
PMc

2.5 N(µ, σ2) N(0.27, 0.07) N(0.10, 0.02)

“Tri(a, b, c)” refers to the triangular density with minimum a, mode b, and maximum c. The references are a = Murray and
Burmaster (1995), b = Vette et al. (2001), and c = Özkaynak et al. (1996a,b).

during hour h. Then, the average daily exposure is

Ei(t) = 1

24

24∑
h=1

9∑
m=1

Eimh(t) = 1

24

24∑
h=1

9∑
m=1

Cmh(t)Timh(t) (6)

The PM concentration for microenvironment m is assumed to be a linear function of the ambient
concentration, that is, Cmh(t) = am + bmCamb,h(t) where Camb,h(t) is the known ambient PM level for
hour h on day t. The coefficients for the residential microenvironment are modeled using a mass balance
equation and have the form

ares = EsmkNcig + Ecooktcook + Eother

(ach + k)V
and bres = P × ach

ach + k
(7)

where P = penetration factor; k = deposition rate; ach = air exchange rate; Esmk = emission rate for
smoking; Ncig = number cigarettes smoked; Ecook = emission rate for cooking; tcook = time spent
cooking; Eother = emission rate for other sources; and V = residential volume.

Exposure simulation via SHEDS-PM requires reliable prior information for the parameters in the
mass balance equation for residential concentration and the linear equations for non-residential concen-
trations. The priors for several parameters for residential concentration are based on exposure studies
conducted in California and are given in Table 1. The priors for the remaining parameters are taken
from Burke et al. (2001). Since no data are available for non-ambient source exposure (e.g., smoking
and cooking) for diameters other than PM25, we only consider exposure from ambient sources.

The two-stage priors for the SHEDS-PM parameters (e.g., in Table 1) reflect both the inherent
variability from person-to-person and day-to-day, and our uncertainty about the hyperparameters that
control the variability distributions. To include both types of randomness in our simulation, each day
we simulate the exposure of M independent populations of size I. The parameters for all individuals
within the same simulated population have the same draw from the uncertainty distribution, but vary
from person-to-person based on the variability distribution.
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The model described above could theoretically be incorporated into a fully Bayesian analysis. How-
ever, exploratory analysis suggests that the daily exposure distributions can be approximated by normal
distributions; the level 0.05 Kolmogorov–Smirnov test of normality rejects the hypothesis that the ex-
posure distribution follows a normal distribution for less than 1% of the simulated distributions for each
of the PM diameter analyzed with SHEDS-PM in Section 6. Therefore, we assume the model

Ei(t) ∼ Normal(m(t), v(t)) (8)

Uncertainty in the exposure distribution on day t is captured by the priors for mean m(t) and variance v(t).
Let {x̄1(t), . . . , x̄M(t)} and {s2

1(t), . . . , s2
M(t)} be the sample means and variances, respectively, of the M

simulated exposure distributions for day t. Then m(t) is given a normal prior with mean and variance
matching the sample mean and sample variance of {x̄1(t), . . . , x̄M(t)}, and v(t) is given a gamma prior
with mean and variance matching the sample mean and sample variance of {s2

1(t), . . . , s2
M(t)}. Combining

the distributions of human activity, hourly PM levels, and priors for SHEDS-PM parameters into priors
for m(t) and v(t) dramatically reduces the computational burden while still reflecting uncertainty in
exposure distribution and allowing the exposure distribution to be updated by the mortality data.

4.2. Relating exposure to mortality

Each day, the exposure distribution is estimated using SHEDS-PM for PM2.5 and several diameters of
ultrafine particles suggested by the dynamic factor analysis. Let Efi(t) be the exposure to pollutant f for
individual i on day t. Since mortality is rare, the distribution of the event of individual i dying on day t
can be approximated with Poisson distribution with expected value

exp


µ + xtβ +

F∑
f=1

Efi(t − l)α̃f


 (9)

where α̃1,. . . , α̃F are the regression parameters associated with the simulated exposures.
Following Richardson et al. (1987), the population average risk on day t is

ηt = exp (µ + xtβ)
F∏

f=1

∫
exp(Ef (t − lf )α̃f )p(Ef (t − lf ))dEf (t − lf ) (10)

where the exposure distribution on day t for pollutant f has density p(Ef (t)). Given ηt , Mt follows a
Poisson(ηt) distribution, independent across t.

We assume that Ef (t) follows a normal distribution with mean mf (t) and variance vf (t), where

mt ∼ N
(
m̄f (t), τ2

f (t)
)

(11)

vt ∼ Gamma(af (t), bf (t))
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Under the normal model for the population exposure distributions, the population average risk condi-
tional on (µf (t), τ2

f (t)) can be written in closed form as

ηt = exp


µ + xtβ +

F∑
f=1

mf (t − lf )α̃f + 1

2

F∑
f=1

vf (t − lf )α̃2
f


 (12)

Comparing Equation (12) with the expected number of deaths as a function of ambient pollution levels
in Equation (5) shows that the effect of ambient concentration equals the effect of personal exposure if
each personal exposure equals the ambient concentration (mf = Cf and vf = 0) or if α̃f = 0, that is,
the pollutant has no effect on mortality. Also, the effect of the population mean exposure mf equals the
effect of personal exposure if vf = 0. Therefore, we expect the bias caused by using a single ambient
concentration to represent the exposure of each individual in the population to be large if the variation
in exposure within the population is large and the pollutant has a large effect on mortality.

When fitting these models to the Fresno data, we choose between models using the deviance informa-
tion criterion (DIC) of Spiegelhalter et al. (2002), defined as DIC = D̄ + PD where D̄ is the posterior
mean of the deviance, PD = D̄ − D̂ is the effective number of parameters, and D̂ is the deviance eval-
uated at the posterior mean of the parameters in the likelihood. The model’s fit is measured by D̄,
while the model’s complexity is captured by PD. Since modeling mortality is the primary focus, only
the likelihood associated with mortality is used in computing DIC, and the likelihood associated with the
ambient concentrations is ignored. Models with smaller DIC are preferred. All MCMC simulations are
carried out in WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml).

5. ANALYSIS OF THE EFFECT OF AMBIENT PM ON MORTALITY

This section analyzes the effect of ambient PM of various diameters on non-accidental mortality. We
first use the Bayesian factor model of Subsection 3.1 to investigate the relationships between the fine PM
diameters less than 0.4 �m. In Subsection 5.2, we apply the full supervised factor model of Subsection
3 to study the effects of PM on all-non-accidental mortality and respiratory-related mortality.

5.1. Dynamic factor analysis of fine PM diameters

To understand the relationships between the fine PM diameters less than 0.4 �m, we temporarily set
aside the mortality data and fit the latent factor model of Subsection 3.1. A principal components
analysis shows that the first three principal components explain 95% of the variance in the daily ambient
concentrations, therefore we present results of the three-factor model.

Figure 3 plots the posterior medians of the loadings. The loadings vary smoothly from one diameter
to the next, in part due to the prior for the loadings which encourages borrowing strength across nearby
diameters. DIC favors the model that smoothes the loadings across diameter (DIC = −1030) over the
model with vague independent normal priors for the loadings (DIC = −913).

The three factors roughly correspond to diameters less than 0.02 �m (factor 1), diameters between
0.02 and 0.08 �m (factor 3), and diameters greater than 0.08 �m (factor 2). These results are similar to
the principal components analysis, indicating the identifiability constraints described in Subsection 3.1
are not affecting the posteriors of the loadings.
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Figure 3. Posterior medians of the loadings of the dynamic factor model for the fine PM diameters

5.2. Analysis of mortality

In this section, we present the results of the supervised factor analysis that makes use of both PM
and mortality data. The medians of the factor loadings in Figure 4(a) are slightly different under this
supervised factor analysis than under the PM-only analysis in Subsection 5.1 (Figure 3). For example,
the loadings for diameters greater than 0.10 �m for factor 1 are smaller than the PM-only analysis.
However, generally speaking, the three factors divide the 17 diameters into the same three predictive
groups as the PM-only analysis: diameters less than 0.02 �m (factor 1), diameters between 0.02 and
0.08 �m (factor 3), and diameters between 0.08 and 0.40 �m (factor 2).

The posteriors of the relative risks are plotted in Figure 4(b). Each 95% interval covers one. How-
ever, the third factor (diameters between 0.02 and 0.08 �m) emerges as a significant predictor of mortality
in the plot of its relative risk by lag (Figure 4(d)). The width of the boxplots indicate that the 4-day lag
has the highest posterior probability. A 4-day lag was also found by Stölzel et al. (2006). Conditional on
this lag, the 95% interval for the relative risk excludes one. For the remaining pollution-related predictors,
the relative risk intervals cover one for all lags and the posteriors of the lag parameters are relatively flat
(none of the possible lag values have posterior probability greater than 0.30 for any of these predictors).

To investigate the influence of the smoothness of the long-term trend and weather covariates, Figure 5
plots the relative risks for the pollution covariates for various degrees of freedom for the spline smoothers.
For each fit, the factors are fixed at their posterior medians under the 20 degrees of freedom model and
the posterior mode lag is used for each pollution covariate. The relative risks for all six pollutants remain
fairly constant after 20 degrees of freedom. Therefore, our choice of degrees of freedom does not appear
to be affecting our results. Also, we excluded the extremely large PM values in January 2001 (Figure 2)
and the results were similar.
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Figure 4. Summary of the analysis of the effects of ambient pollution levels on non-accidental mortality. Panel (a) shows the
posterior medians of the factor loadings. Panel (b) shows the posteriors of the relative risks of the predictors of mortality. The
whiskers of the boxplots represent 95% intervals and the relative risks represent a one standard deviation increase. Panels (c)
and (d) plot the relative risk associated with PM2.5 and factor 3 for each lag. The width of the boxplots are proportional to the
posterior probability of the lag. (a) Factor loadings, (b) relative risks, (c) relative risk for PM2.5 by lag, (d) relative risk for factor

3 by lag (particles between 0.02 and 0.08 �m)

6. ANALYSIS OF THE EFFECT OF EXPOSURE ON MORTALITY

As described in Section 1, using a single value of ambient PM levels to represent the entire population’s
exposure as in Section 5’s analysis can lead to bias. In this section, we use SHEDS-PM to compare
the effects of ambient pollution levels and the effects of simulated personal exposure. The population
distribution of exposure is simulated for four PM diameters: 0.02, 0.05, 0.20 �m, and PM2.5. To esti-
mate the exposure distributions, for each day, we simulated the exposure for M = 20 populations of
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Figure 5. Plots of the median relative risk for the pollutants against the degree of freedom in the spline smooth for the season-
ality/weather covariates

I = 100 elderly Caucasians in the census tract that includes the monitoring station. The demographics
of elderly Caucasians is fairly constant throughout the Fresno area so these exposure distributions are
representative of the exposure distributions in the entire Fresno area.

Figure 6 illustrates the variability and uncertainty in the exposure distribution for PM2.5 on 2 days in
2001. For each simulated population, a normal density is fit by matching the first two moments of the
sample distribution. For each of the 20 simulated populations, there is substantial variability in personal

Figure 6. Fitted density curves for 20 simulated PM2.5 exposure distributions on (a) 1 January 2001 and (b) 1 June 2001. The
vertical lines are the ambient concentrations
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Table 2. Mean (SD) of the daily ratios of the population mean exposure (averaged over all uncertainty runs) to
daily average ambient concentration by season, weekday, and diameter

Diameter 0.02 �m 0.05 �m 0.20 �m PM2.5

Winter, weekday 0.27 (0.026) 0.36 (0.078) 0.44 (0.140) 0.65 (0.004)
Winter, weekend 0.23 (0.029) 0.33 (0.024) 0.40 (0.021) 0.66 (0.006)
Spring, weekday 0.30 (0.047) 0.39 (0.032) 0.45 (0.018) 0.64 (0.003)
Spring, weekend 0.27 (0.039) 0.36 (0.022) 0.42 (0.017) 0.65 (0.006)
Summer, weekday 0.34 (0.034) 0.46 (0.020) 0.52 (0.015) 0.76 (0.002)
Summer, weekend 0.38 (0.068) 0.49 (0.042) 0.53 (0.027) 0.79 (0.008)
Fall, weekday 0.23 (0.023) 0.32 (0.016) 0.38 (0.017) 0.62 (0.002)
Fall, weekend 0.27 (0.036) 0.35 (0.024) 0.41 (0.026) 0.64 (0.013)

exposure within the population. For example, the average ambient PM2.5 concentration on 1 January
2001 was 176 �g/m3, and PM2.5 exposure ranges from 50 to 200 �g/m3. There is also considerable
uncertainty about the true exposure distribution, as evident by the differences in the fitted densities.
For the 20 populations on 1 January 2001, the mean exposure ranges from 91 to 132 �g/m3 and the
standard deviation of exposure ranges from 20 to 41 �g/m3.

The ratio the daily population mean exposure and the average daily ambient concentration varies
considerably across diameter. Table 2 shows that the ratio of exposure to ambient concentration is
smaller for ultrafine particles than for PM2.5. This is due in large part to the small penetration factor
and large deposition rate for ultrafine particles (Table 1). Table 2 also shows that the ratio of exposure
to ambient concentration depends on the season and the day of the week. For each particle size, people
are exposed to the largest proportion of the ambient concentration on summer weekends, times when
people are generally more active and spend more time outdoors. The majority of the variability in the
ratio the daily population mean exposure and the average daily ambient concentration is explained
by season and day of the week, as the standard deviation within each season/weekday combination is
small relative to the change across season/weekday combinations. However, there is also considerable
variation within each season/weekday combination due to factors such as day-to-day variation in human
activity and the diurnal cycle of pollution.

To determine the effect of incorporating the exposure simulator into our analysis, Table 3 compares
the results using simulated exposure as opposed to ambient levels as predictors of mortality. Each model
includes smooth functions for long-term trend, temperature, humidity, a weekday indicator, and ambient
levels of PM10 and carbon monoxide. The first model also includes the daily average ambient level of
PM25 and several fine diameters chosen to represent the latent factors of Subsection 5.2. The posterior

Table 3. Median (95% interval) for the relative risks of non-accidental mortality for the pollution covariates for
models using the ambient levels of PM10 and carbon monoxide along with covariates for the fine PM diameters

Diameter Ambient concentration Exposure distribution

DIC (PD) 2170.9 (10.0) 2172.2 (10.6)
0.02 �m 1.008 (0.946, 1.073) 1.020 (0.796, 1.319)
0.05 �m 1.038 (0.978, 1.115) 1.060 (0.948, 1.207)
0.20 �m 0.945 (0.885, 1.003) 0.945 (0.882, 1.019)
PM2.5 0.975 (0.921, 1.032) 0.958 (0.875, 1.056)

The first model uses ambient concentration of the fine PM diameters, the second model uses the exposure distribution. The relative
risks are the relative risk due to a one standard deviation increase in ambient concentration.
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mode lag is used for each pollution covariate. As in the supervised factor analysis of Section 5, PM with
diameter 0.05 �m (which represents Section 5’s factor 3) is the strongest predictor of mortality. However,
perhaps due to the correlation between predictors, none of PM variables are significant predictors of
mortality.

The second model replaces the ambient concentrations of PM25 and the three particles with diameter
less than 0.40 �m with their estimated exposure distributions as described in Subsection 4.2. The
relative risks are similar for both models, so it does not appear that adding the exposure model has
removed any systematic bias for these data. For example, the estimated relative risk for diameter 0.05 �m
increases from 1.038 using ambient concentrations to 1.060 using the exposure distribution. However,
the 95% interval for this relative risk is more than 50% wider for the exposure model than for the
ambient concentration model due to variability and uncertainty in the population exposure distribution.
This illustrates the potential importance of accounting for variability and uncertainty in the population
exposure distribution when making inferences about the relationship between PM and mortality.

7. DISCUSSION

This paper presents a supervised dynamic factor model to relate a multivariate time series of pollutants
with daily mortality. The model extends the usual dynamic factor model by borrowing strength across
neighboring diameters, which leads to an improvement in DIC. Under this model, none of the latent
factors for fine ambient PM levels are significantly associated with mortality while accounting for lag
uncertainty. However, conditional on a 4-day lag, ultrafine particles with diameter between 0.02 and
0.08 �m are shown to significantly predict mortality.

Our latent factor analysis used three factors because three factors seemed to be enough to capture
the major trends in the multivariate time series of fine particles. We tried varying the number of factors
to larger than three and in no case were any of the additional latent factors significant predictors
of mortality. Of course, there are more sophisticated methods for choosing the number of factors.
For example, the stochastic search variable selection procedure of George and McCulloch (1993) to
determine the probability of each factor being included in the predictive model. Alternatively, Lopes
and West (2004) assume the number of factors is unknown and use reversible jump MCMC. However,
allowing the number of factors to be unknown in the SHEDS-PM model would be very difficult, so we
elected to use a fixed number of factors throughout the analysis.

The dynamic factor model proposed in Section 3 could be adapted to model a single pollutant that is
repeatedly measured at multiple locations. In this spatiotemporal setting, each site would be assigned a
vector of loadings and the loadings for each latent factor would be smoothed with a spatial prior. This
would result in a flexible spatiotemporal model that could be fit to non-stationary and non-separable
data, as shown in Equation (3).

We also analyze mortality using simulated exposure. The exposure distributions from SHEDS-PM
model show that actual personal exposures differed for the various PM size fractions, which is important
to account for when investigating the joint effects of multiple pollutants on daily mortality as in this
study. For these data, the relative risk estimates were only slightly changed by adding the simulated
exposure, but the 95% posterior intervals were widened by accounting for both the variability and
uncertainty in the population exposure distributions.

Data from only a single monitoring location was available for this study; therefore, the daily exposure
distributions were all estimated relative to a single ambient concentration, which may explain why the
relative risk estimates did not change significantly when the exposure distributions were used. It is

Copyright © 2008 John Wiley & Sons, Ltd. Environmetrics 2009; 20: 131–146
DOI: 10.1002/env



EFFECTS OF ULTRAFINE PM 145

important to note that the SHEDS-PM model can be applied using data from multiple monitors to
produce spatial fields of exposures. Exposure distributions that vary spatially may have a greater impact
on relative risk estimates in models of spatial differences in health effects. To apply SHEDS-PM on a
large spatial domain, the normal approximation for the exposure distribution and associated integrated
relative risk presented here would be helpful in creating a computationally feasible model.
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